Review Quiz 1

Instructions. You have 20 minutes to complete this review quiz. You may use your calculator. You may not use any other materials. Put your answers on the separate answer form provided.

```
nonzero
```

1. If the cross product of two $/$ vectors is $\langle 0,0,0\rangle$, what can we conclude about the vectors?
(a) Nothing - not enough information.
(b) They are orthogonal.
(c) They are parallel.
(d) They are unit vectors.
(e) The vectors have the same magnitude.

$$
\begin{aligned}
& \text { Recall: }|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta \text {, where } \theta \text { is the } \\
& \text { angle between } \vec{a} \text { and } \vec{b} \text {. } \\
& \text { If } \vec{a} \times \vec{b}=\langle 0,0,0\rangle \text { and } \vec{a} \neq \overrightarrow{0}, \vec{b} \neq \overrightarrow{0} \text {, } \\
& \text { then } \sin \theta=0 \Rightarrow \theta=0 \Rightarrow \vec{a} \text { and } \vec{b} \text { are } \\
& \text { parallel }
\end{aligned}
$$

2. Which of the following is a unit vector?
(a) $\langle 2,1,-2\rangle$
(b) $\langle 2 / 3,1 / 3,-2 / 3\rangle$
(c) $\langle 2 / 5,1 / 5,2 / 5\rangle$
$\left|\left\langle\frac{2}{3}, \frac{1}{3},-\frac{2}{3}\right\rangle\right|=\sqrt{\frac{4}{9}+\frac{1}{9}+\frac{4}{9}}=1$
(d) $\langle 1,1,1\rangle$
(e) $\langle 1 / 3,1 / 3,1 / 3\rangle$
3. Which vector is orthogonal to $\langle 1,3,2\rangle$?
(a) $\langle 1,1,1\rangle$
(b) $\langle 0,1,0\rangle$

Recall: \vec{a} and \vec{b} are orthogonal if $\vec{a} \cdot \vec{b}=0$
(c) $\{1,-1,1\rangle$
$\langle 1,3,2\rangle \cdot\langle 1,-1,1\rangle=1-3+2=0$
(d) $\langle-1,0,1\rangle$
(e) $\langle 2,3,1\rangle$
4. Which of these planes is perpendicular to the line $x=2-t, y=-2+\frac{1}{2} t, z=1+2 t$?

(a) $x-\frac{1}{2} y-2 z=5$
(b) $2 x-2 y+z=3$
(c) $x-2 y-\frac{1}{2} z=8$

This line has direction vector $\left\langle-1, \frac{1}{2}, 2\right\rangle$
(c) $x-2 y-\frac{1}{2} z=8$
(d) $-\frac{1}{2} x+\frac{1}{2} y-z=7$$\quad$ This plane has a normal vector

(e) $2 x+z=4$ These 2 vectors are parallel
5. For this configuration of points, what is the vector projection of $\overrightarrow{P_{1} Q}$ onto $\overrightarrow{P_{1} P_{2}}$?
(a) $\overrightarrow{P_{1} P_{2}}$

(b) $2 \overrightarrow{P_{1} P_{2}}$
(c) $\frac{1}{2} \overrightarrow{P_{1} P_{2}}$
(d) $\sqrt{2} \overrightarrow{P_{1} P_{2}}$
(e) $\frac{1}{\sqrt{2}} \xrightarrow[P_{1} P_{2}]{ }$

